Купить Matlab  |  Mathematica  |  Mathcad  |  Maple  |  Statistica  |  Другие пакеты Поиск по сайту
Internet-класс  |  Примеры  |  Методики  |  Форум  |  Download
https://hub.exponenta.ru/


Описание пакета Statistica 5.5

 

 
Корреляции
К предыдущему разделуК следующему разделу

В системе имеется большой набор методов для исследования корреляций между переменными. Окно приложения STATISTICA Прежде всего, могут быть вычислены все обычно используемые характеристики связи между переменными, в том числе: коэффициент корреляции Пирсона r, коэффициент ранговой корреляции Спирмена R, tau (b, c) Кендалла, Гамма, тетрахорический r, Phi, V Крамера, коэффициент сопряженности C, D Соммера, коэффициенты неопределенности, частные и получастные корреляции, автокорреляции, различные меры расхождения и т.д. (нелинейные корреляции, регрессия для цензурированных данных и другие более специальные меры корреляции реализованы в модулях Нелинейное оценивание, Анализ выживаемости и других). Корреляционные матрицы могут быть вычислены с построчным либо попарным удалением пропусков или с подстановкой среднего значения вместо пропущенных значений. Как и во всех других модулях системы STATISTICA, для достижения высокой - не имеющей аналогов среди других пакетов - точности результатов здесь можно производить вычисления с повышенной точностью (где требуется - с "учетверенной"). Как и вообще все численные результаты, корреляционные матрицы в системе STATISTICA выводятся в виде таблиц, имеющих богатые возможности форматирования данных (см. ниже) и визуализации численных результатов; так, можно "указать" на конкретный корреляционный коэффициент и вызвать для него контекстное меню всевозможных "описательных диаграмм" (диаграммы рассеяния с доверительными интервалами, различные объемные гистограммы двумерных распределений, вероятностные графики и т.д.). Богатые средства закрашивания позволяют выделять (или, наборот, затенять) отдельные точки на диаграмме рассеяния и таким образом оценивать их влияние на положение линии регрессии (и других подогнанных кривых). Таким образом исследуются, например, выбросы или резко выделяющиеся наблюдения. Поддерживаются разнообразные форматы глобального вывода корреляций; значимые коэффициенты корреляции могут автоматически выделяться цветом, каждую ячейку таблицы результатов можно расширить и посмотреть число n наблюдений, по которым вычислен коэффициент и уровень значимости p, можно запросить подробные результаты, включающие все описательные статистики (попарные средние и стандартные отклонения, B-веса, пересечения, и т.д.). В таблице результатов можно просматривать очень большие корреляционные матрицы (размером до 4096 x 4096), а с помощью процедуры больших корреляций и таблиц результатов модуля Менеджер мегафайлов можно вычислять матрицы практически неограниченного размера (до 32000 x 32000). Как и все численные результаты, корреляционные матрицы выводятся в виде таблиц, поддерживающих операцию масштабирования и интерактивно управляемый формат вывода значащих цифр (например, от +0.4 до +0.41358927645193); таким образом, матрицы больших размеров можно сжимать (с помощью операции уменьшения, либо изменением формата вывода, что делается перетягивнием границ столбцов с помощью мыши). Это облегчает зрительное восприятие и, в частности, помогает быстро находить коэффициенты, превосходящие заданную величину или имеющиее определенный уровень значимости (соответствующие ячейки в таблице результатов будут помечены красным цветом). Как и во всех других диалоговых окнах вывода, здесь доступны различные общие параметры графического вывода, позволяющие проводить дальнейшее изучение закономерностей и взаимосвязей между переменными; например, двух- и трехмерные диаграммы рассеяния (с метками наблюдений или без них) служат для выявления зависимостей по подмножествам наблюдений или последовательностям переменных. Корреляционные матрицы могут быть категоризованы группирующими переменными и представляться графически в виде категоризованных диаграмм рассеяния. Могут быть также выведены последовательности таблиц результатов "группировки корреляционных матриц" (по одной матрице на каждое подмножество наблюдений). Окно приложения STATISTICA Вся корреляционная матрица может быть представлена на одном графике (со сколь угодно большим разрешением) в виде матрицы диаграмм рассеяния; такие матрицы можно интерактивно просматривать, "увеличивая" нужные участки графика (или прокручивая график в режиме увеличения) [см. рис.]. Имеется также возможность строить категоризованные матричные диаграммы рассеяния (одна матричная диаграмма на каждое подмножество данных). Можно поступить иначе и построить матричные диаграммы рассеяния для нескольких подмножеств (например, задаваемых уровнями группирующей переменной или сколь угодно сложными условиями выбора наблюдений), где отдельные подмножества данных изображаются различными маркерами. Для визуализации корреляционных матриц и поиска в них глобальных закономерностей имеется еще много других графических методов (контурные графики, несглаженные поверхности, пиктограммы и т.д.). Все эти операции требуют лишь нескольких щелчков мыши, а для выбора параметров предоставляются различные средства быстрого доступа. Одновременно на экране можно открыть любое число таблиц результатов и графиков, что принципиально облегчает интерактивный разведочный и сравнительный анализ.
См. также следующий раздел, посвященный быстрым основным статистикам.

В начало страницы К предыдущему разделуК следующему разделу

| На первую страницу | Поиск | Купить Matlab

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter


Copyright © 1993-2024. Компания Softline. Все права защищены.

Дата последнего обновления информации на сайте: 04.03.17
Сайт начал работу 01.09.00