Купить Matlab  |  Mathematica  |  Mathcad  |  Maple  |  Statistica  |  Другие пакеты Поиск по сайту
Internet-класс  |  Примеры  |  Методики  |  Форум  |  Download
https://hub.exponenta.ru/


Курс ЛА.
Готовые занятия
 
Занятие 4
Теоретический материал Теоретическая справка Примеры Задачи для самостоятельного решения Контрольные вопросы

Система линейных уравнений ~ Решение системы ~ Совместные и несовместные системы ~ Однородная система ~ Совместность однородной системы ~ Ранг матрицы системы ~ Условие нетривиальной совместности ~ Фундаментальная система решений. Общее решение ~ Исследование однородной системы

 

Рассмотрим систему m линейных алгебраических уравнений относительно n неизвестных
x1 , x2 , ..., xn :

Решением системы называется совокупность n значений неизвестных

x1=x'1 , x2 =x'2 , ..., xn=x'n ,

при подстановке которых все уравнения системы обращаются в тождества.

Система линейных уравнений может быть записана в матричном виде:

где A — матрица системы, b — правая часть, x — искомое решение, Apрасширенная матрица системы:

.

Система, имеющая хотя бы одно решение, называется совместной; система, не имеющая ни одного решения — несовместной.

Однородной системой линейных уравнений называется система, правая часть которой равна нулю:

Матричный вид однородной системы: Ax=0.

Однородная система в с е г д а  с о в м е с т н а, поскольку любая однородная линейная система имеет по крайней мере одно решение:

x1=0 , x2=0 , ..., xn=0.

Если однородная система имеет единственное решение, то это единственное решение — нулевое, и система называется тривиально совместной. Если же однородная система имеет более одного решения, то среди них есть и ненулевые и в этом случае система называется нетривиально совместной.

Доказано, что при m=n для нетривиальной совместности системы необходимо и достаточно, чтобы определитель матрицы системы был равен нулю.

 

ПРИМЕР 1. Нетривиальная совместность однородной системы линейных уравнений с квадратной матрицей.

 

Применив к матрице системы алгоритм гауссова исключения, приведем матрицу системы к ступенчатому виду

.

Число r ненулевых строк в ступенчатой форме матрицы называется рангом матрицы, обозначаем
r=rg(A) 
или r=Rg(A).

Справедливо следующее утверждение.

Для того, чтобы однородная система была нетривиально совместна, необходимо и достаточно, чтобы ранг r матрицы системы был меньше числа неизвестных n.

 

ПРИМЕР 2. Нетривиальная совместность однородной системы трех линейных уравнений с четырьмя неизестными.

 

Если однородная система нетривиально совместна, то она имеет бесконечное множество решений, причем линейная комбинация любых решений системы тоже является ее решением.
Доказано, что среди бесконечного множества решений однородной системы можно выделить ровно n-r линейно независимых решений.
Совокупность n-r линейно независимых решений однородной системы называется фундаментальной системой решений. Любое решение системы линейно выражается через фундаментальную систему. Таким образом, если ранг r матрицы A однородной линейной системы Ax=0  меньше числа неизвестных n и векторы
e1 , e2 , ..., en-r  образуют ее фундаментальную систему решений (Aei =0, i=1,2, ..., n-r), то любое решение x системы Ax=0 можно записать в виде

x=c1 e1 + c2 e2 +  ... + cn-r en-r ,

где c1 , c2 , ..., cn-r — произвольные постоянные. Записанное выражение называется общим решением однородной системы.

Исследовать однородную систему   — значит установить, является ли она нетривиально совместной, и если является, то найти фундаментальную систему решений и записать выражение для общего решения системы.

Исследуем однородную систему методом Гаусса.

Пусть

матрица исследуемой однородной системы, ранг которой r< n.

Такая матрица приводится Гауссовым исключением к ступенчатому виду

.

Соответствующая эквивалентная система имеет вид

Отсюда легко получить выражения для переменных x1 , x2 , ..., xr через xr+1 , xr+2 , ..., xn . Переменные
x1 , x2 , ..., xr  называют базисными переменными, а переменные xr+1 , xr+2 , ..., xnсвободными переменными.

Перенеся свободные переменные в правую часть, получим формулы

которые определяют общее решение системы.

Положим последовательно значения свободных переменных равными

и вычислим соответствующие значения базисных переменных. Полученные n-r решений линейно независимы и, следовательно, образуют фундаментальную систему решений исследуемой однородной системы:

 

ПРИМЕР 3.  Исследование однородной системы на совместность методом Гаусса.

В начало страницы

Примеры Задачи для самостоятельного решения Контрольные вопросы
| На первую страницу | Поиск | Купить Matlab

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter


Copyright © 1993-2024. Компания Softline. Все права защищены.

Дата последнего обновления информации на сайте: 04.03.17
Сайт начал работу 01.09.00