Купить Matlab | Mathematica | Mathcad | Maple | Statistica | Другие пакеты | ![]() |
Internet-класс | Примеры | Методики | Форум | Download | |
![]() |
|
|
Синтаксис: J = bessel(alpha, X) Описание: Линейное дифференциальное уравнение вида
где a - неотрицательная величина, называется уравнением Бесселя, а его решения известны как функции Бесселя. Для вычисления функций Бесселя разработан набор M-файлов, обеспечивающий высокую точность их вычисления для действительных значений аргумента:
Сохранена также функция [J, digits] = bessela(alpha, Z), которая допускает комплексные значения аргумента и позволяет получать оценку количества правильных цифр результата. Значение digits, равное 14 или 15, соответствует максимальной точности IEEE- или VAX-арифметик; однако значение digits, равное единице или двум, означает, что результату доверять нельзя. Для значений alpha и x, не превышающих 50, количество точных цифр по крайней мере 8. На плоскости (alpha, x) область наименьшей точности расположена вблизи прямой alpha = x, так что малые alpha и большие x, и наоборот, дают более точные значения. Функция J = bessel(alpha, X) вызывает:
Примеры: Функция besselj(3:9, (10:.2:20)') генерирует таблицу размера 51 х 7, воспроизведенную на стр. 400 работы [1]; функция bessely(3:9,(10:.2:20)') генерирует таблицу размера 51 х 7, воспроизведенную на стр. 401 работы [1]; функция besseli(3:9, [0:.2:9.8 10:.5:20], 1) генерирует таблицу размера 71 х 7, воспроизведенную на стр. 423 работы [1]; функция besselk(3:9, [0:.2:9.8 10:.5:20], 1) генерирует таблицу размера 71 х 7, воспроизведенную на стр. 424 работы [1]. Оценим точность вычисления функции Бесселя для разных значений alpha и x.
Ccылки: Abramovitz M., Stegun I. A. Handbook of Mathematical Functions. National Bureau of Standards, Applied Math. Series #55. Dover Publications, 1965. |
| На первую страницу | Поиск | Купить Matlab | |
|
|