Functional Extension of Decision Trees.

Mikhail V. Kiselev
Megaputer Intelligence Ltd., 38 B.Tatarskaya, Moscow 113184, Russia

mkiselev@megapute.ru

Sergei M. Ananyan
Department of Physics, College of William and Mary, Williamsburg,

VA 23187 USA

sxanan@physics.wm.edu

Sergei B. Arseniev
Megaputer Intelligence Ltd., 38 B.Tatarskaya, Moscow 113184, Russia

sarseniev@megaputer.ru

A B S T R A C T

The KDD systems based on decision tree algorithms such as C4.5 or CART express discovered knowledge in form of trees or lattices containing in their nodes predicates of types x=a or x [a, b]. In the paper we consider the KDD methods producing decision trees with more general predicates associated with their nodes. Namely, these are expressions of form f(x, y, ..., w) < a. The functions f are obtained as result of using regression-based classification methods implemented in the PolyAnalyst data mining system. We demonstrate that these more general knowledge representation structures allows one to express wide range of classification rules more clearly and adequately avoiding over-fit.

KEYWORDS: knowledge discovery, non-linear regression, decision trees

1. Introduction.
One of the most widely used classes of KDD algorithms is decision tree algorithms. Their strong sides are moderate computational complexity and clarity of representation of discovered knowledge. At present there exists a great number of various decision tree algorithms which differ in criteria for creation of new tree nodes and pruning. The most well known representatives of this class of systems are C4.5 [Quinlan 93], CART [BFOS 84], SIPINA [Zighed 92], Chi2-Link [Kass 75].

Despite of the fact that decision tree systems are applied to great variety of problems and provide good results in many fields they have a number of drawbacks. In our opinion majority of them are rooted in low expressive power of used knowledge representation form. Namely, all existing decision tree systems known to the authors use very simple class of criteria associated with decision tree nodes. They are predicates of form x=a or x [a, b]. The inability to build more various criteria often leads to creation of over-complicated decision trees in cases when boundaries between categories to be classified in the space of independent variables cannot be represented well as a set of hyperplanes.

Fig. 2. Decision tree built by SIPINA for "y > x2" problem.

Fig. 1. Recognition of "y > x2" class by the SIPINA decision tree system.

It can be illustrated by the following simple example (see Fig.1 and Fig.2). Let us assume that analyzed data include only two numerical fields - x and y. We selected randomly 30 points from the rectangle on (x, y)-plane with corners (-1, 0) and (1,1). We divided these 30 data points in two classes “pos” and “neg” using criterion y > x2. The discriminating curve y = x2 is shown on Fig.1 as the fat line. After that we built decision tree classifying our data points using SIPINA decision tree system. This decision tree is depicted on Fig. 2. The decision tree can be interpreted as a set of inequalities defining a region which should contain data points from the class “pos”. This region is shaded on Fig. 1. We can see that the simple criterion y > x2 is approximated by the quite complex decision tree and found region for class “pos” differs substantialy from correct region defined by inequality y > x2. Of course, number of our training examples is very small that makes necessary analysis of significance of created classification rules and other verification procedures but general conclusion about insufficient expressiveness of usual decision tree in this case is still valid.

This representation inadequacy could be eliminated if decision tree nodes were assigned more general classifying predicates f(xi) > a, where f(xi) is a function of independent variables and a is a constant. Such decision trees will be called functional extension of decision trees (FEDT). In the next section we show how regression-based classification methods can be used for finding the functions f(xi). In section 3 we propose a basic algorithm for creation of FEDT. In section 4 one example of application of our technique to one public domain benchmark classification problem from university of Lyon repository is considered. Section 5 contains summary of this paper.

2. Application of regression-based classification methods to finding functional inequalities associated with decision tree nodes.

When decision tree algorithm is used for solution of classification learning problem it decomposes the problem to several classification problems associated with its created nodes and applies some algorithm for finding classifying predicates which solve them. The main difference between our approach and other decision tree algorithms is rooted in method for finding classifying predicates associated with nodes. The method utilized by us is based on the regression-based classification methods described below.

Let us assume that we have two groups A and B of training examples - records having the same format (the same set of numerical, boolean and symbolic fields). We should build some rule which relates any possible record of the same format to group A or B depending on values of its fields. It is one of general formulations of the classification learning problem. The essence of the proposed method of solution of this problem is quite simple. We complement records from both groups by one more numerical field IND containing zeros in records from the group A and ones in records from the group B. Then we use some method of searching for a numerical dependence between IND and other fields. As in majority of regression methods we use the “least sum of squares” criterion for the evaluation of a found dependence. An obtained continuous function can be considered as a fuzzy membership indicator for a set defined by the group B. This thesis can be substantiated by the following reasoning.

Suppose that both groups A and B include a large number of records and we have found some function fIND(xi) as a result of solving our regression problem. Here xi is the set of fields entering our regression model (xi Xn). Let us break X into a number of small regions such that variation of function fIND(xi) in each region is negligibly small. It is evident that if the value of this function in each region were equal to nB /(nA+nB), where nA and nB are numbers of records from groups A and B in this region, then this function would have the least possible sum of squares of deviations and therefore would be an ideal solution for our regression problem. At the same time this function would express the probability that a record with certain values of its fields xi belongs to the group B and therefore would correspond to definition of a fuzzy set membership indicator.

Of course, in practice, the found regression function cannot serve as an exact measure of probability that a given record belongs to the group B. For example, its value does not lie necessarily in [0,1] interval. Nevertheless, in many cases it can provide an acceptable picture of distribution of data points from sets A and B in different regions of X. The found function fIND(xi) can be used in a classification rule of the form fIND(xi) > a, where a threshold value a is selected so that this rule would produce a minimum number of misclassified training examples.

This method can be used also when classification rules for more than two sets should be obtained. If training examples include representatives of N classes where N > 2 we should solve N regression problems so that in a j-th regression problem the value of the dependent variable is equal to 1 for the records belonging to the j-th class. As a result we obtain N functions fj expressing the measure of affinity to the j-th class. In order to classify a new record we should calculate for it functions fj for all values of j and if the value of a function fk is the largest one, we should relate the record to the k-th class.

Thus, for every algorithm of discovery of numerical dependencies we have a respective algorithm of classification learning.

In a practical realization of our approach we used two methods for discovery of numerical dependencies implemented in the data mining system PolyAnalyst [Kiselev, Arseniev 96], namely our version of multi-linear regression with an automated selection of independent variables and creation of general non-linear regression models in the form of functional programs (so called Core PolyAnalyst algorithm). The first method will be referred to as LIN, the second - as PA.

The LIN method uses the value of F-statistics as a criterion for inclusion in the regression model or rejection of independent variables. In order to evaluate significance of the result under condition of multiple regression model trials a randomized testing is performed. As it was shown (see, for example, [BKW 80; Jensen 91]) these measures allow one to build reliable regression models avoiding over-fit.

We will furnish here only a very brief sketch of algorithms underlying the PA method - their detailed description would require too much space (see [Kiselev 94]). The kernel of the data mining system PolyAnalyst is a mechanism that builds new functional programs from existing functional programs. Ignoring semantics of these programs, they can be understood as abstract objects with some number of inputs (or without inputs) and one output. Inputs (also called arguments) and outputs are marked by their type and some other attributes. The simplest atomic functional procedures are called primitives. The set of primitives is determined by the structure and properties of data to be analyzed. The set of primitives includes standard and user-defined primitives. Information in databases is accessed via special data access primitives which also can be standard or user-defined. To build new functional programs from existing ones PolyAnalyst uses four production schemes. The simplest scheme is functional composition. PolyAnalyst takes one functional program (it is called a producing function) and connects some its inputs with outputs of some other existing programs. This process is controlled by the compatibility rules which prohibit certain combinations of attributes of connected inputs and outputs. The second scheme serves to create iterative or recursive functional programs. It realizes constructions similar to for and while blocks of C language. The scheme called difference is used when structured data such as time series or vectors are explored. It produces programs calculating the difference of some numerical values for neighboring “data points” in these series or vectors. And last is a scheme most important for discovery of numerical laws. It produces functional programs realizing rational expressions (a polynom divided by a polynom) formed from numerical constants and some existing programs (naturally, they should return numerical values).

In fact, this mechanism realizes a simple universal programming language suitable for formalization of a wide range of laws and rules which can be discovered in data. PolyAnalyst has an explanation generator module which translates rules expressed in the form of functional programs into a clear verbal form including standard mathematical notation. Generator of functional programs is controlled by the search strategy module. The search direction is determined in accordance with evaluation of each individual functional program carried out by the search strategy module. The search process is a combination of the full search (low priority component) and so-called 'generalizing transformations' - GT (high priority component). The GT process takes one of the best found programs (called the root program) and uses it for creation of new programs with the help of one of the above mentioned production schemes in all possible ways satisfying the following condition. Each derivative program should have some set of arguments such that when these arguments have certain constant values, the derivative program becomes identical to the root program. This condition guarantees that derivative programs fit data not worse (in terms of the standard error) than the root program. In normal situations the GT process takes the most part of the PolyAnalyst computation time.

Methods for avoiding over-fit used in PA are similar to ones used in LIN. They are: randomized testing and analysis of significance of regression model components on the basis of calculation of the respective regression coefficient standard errors. These methods help building only reliable and significant regression models.

3. Creating decision tree.

Thus, we have described methods for solution of classification sub-problem associated with some FEDT node. In order to build complete FEDT algorithm we should also specify criteria for creation of new decision tree nodes which become children of this node.

We use three kinds of criteria for generation of child nodes. First of all, the methods used for solution of classification problem associated with some terminal node of growing decision tree may fail to find significant classification rule for this problem. It is possible because both regresion-based classification algorithms described in previous section have internal significance check mechanisms which may reject any classification function fIND(xi) found. In the second case a significant fIND(xi) function is found but it gives number of classification errors not less than number of examples belonging to class less represented in classified data. For example, if examples from class A are more numerous than examples from class B then assuming simply that all examples are from class A we make nB mistakes and found classification function fIND(xi) does not give better classification rule. In this case we cannot create new child nodes. At last if classification problem corresponding to some decision tree node includes too few examples even exact classification rule obtained for it may not be considered as significant. For examnle in our algorithm we do not create child nodes for node including 10 examples or less.

Thus, our FEDT creation algorithm can be written as following (we consider here classification problem for two classes A and B):

FEDT CREATION ALGORITHM
INPUT: set of records which are represented as sets of attribute values xi; the records have
attribute IND which has value 0 for records from class A and value 1 for records
from class B.

1. Create root node representing the whole set of records to be classified.

2. Execute PROCEDURE A for this node and whole set of records.

3. end of algorithm.

PROCEDURE A
INPUT: set of records INP, node PAR

1. nA <- number of records in INP belonging to class A.

2. nB <- number of records in INP belonging to class B.

3. Number of records in INP is less or equal to 10.

a. YES -> assign to node PAR marker “A” or “B” depending on relative number of records from classes A and B in set INP; if number of records from classes A and B are equal assign marker “UNDEFINED”; end of procedure.

b. NO -> continue to step 4.

4. Using one of described above regression-based classification methods solve classification problem with target attribute IND.

a. No significant fIND(xi) function is found -> execute step 3a.

b. Significant fIND(xi) function is found -> continue to step 5.

5. Select constant a so that classification rule “if fIND(xi)>a then the record xi belongs to class B; else it belongs to class A” would give minimum number of classification errors. A simplest but not fastest way to do it includes calculation of values fIND(xi) for all records in INP, their ordering and determination of misclassified examples number for all values of a equal to arithmetic mean of subsequent values of fIND(xi).

a. Number of classification errors = MIN(nA, nB) -> execute step 3a.

b. Number of classification errors < MIN(nA, nB) -> continue to step 6.

6. Assign classifying proposition “fIND(xi)>a“ to node PAR.

7. Create for node PAR left child node LCHI.

8. Execute PROCEDURE A for node LCHI and subset of INP consisting of records for which fIND(xi) a.

9. Create for node PAR right child node RCHI.

10. Execute PROCEDURE A for node RCHI and subset of INP consisting of records for which fIND(xi) > a.

11. end of procedure.
It is basic scheme of the algorithm. It does not consider several possible complications. For example, it may happen that function fIND(xi) cannot be calculated for part of records because of missing attributes, division by zero or other exceptional situations. Also many advancements of this algorithm can be made, for example, node merging mechanism similar to one implemented in SIPINA [Zighed] decision tree system. Nevertheless it works very well in many cases. In next section we will show an example of FEDT created by our algorithm for one public domain benchmark dataset from university of Lyon repository.

4. An example of FEDT.
Now let us demonstrate how FEDT looks which was built by the algorithm described above for one real problem. This version of algorithm used PA method for solution of individual classification sub-problems The considered classification problems relates to a publicly available dataset which contains physiological parameters and results of specialized medical tests for 180 people. Some of them are known to have ischemic heart disease, the others do not have it. It is required to build rules for ischemic heart disease diagnostics. The data include 7 numerical, 3 boolean, 3 categorical variables:

V1: Age;

V2: Sex [1: Male, 0: Female];

V3: Chest pain type [1: Typical, 2: Atypical angina, 3: Non-anginal pain];

V4: Resting blood pressure (in mm Hg);

V5: Serum Cholesterol in mg/dl;

V6: Fasting blood sugar > 120mg/dl [1: TRUE, 2: FALSE];

V7: Resting electrocardiographic results [0: Normal, 1: Having ST-T wave abnormality (T

 wave inversions and/or ST elevation or depression of > 0.05 mV), 2: Showing probable

 or definite left ventricular hypertrophy by Estes' criteria];

V8: Maximum heart rate achieved;

V9: Exercise induced angina [1: YES, 2: NO];

V10: ST depression induced by exercise relative to rest;

V11: The slope of the peak exercise ST segment [1: upsloping, 2: flat; 3: downsloping];

V12: number of major vessels [0..3, integer] colored by flourosopy;

V13: thal: [3: normal, 6: fixed defect, 7: reversable defect];

Y: diagnosis of heart disease (angiographic disease status) [1: >50% diameter narrowing,

 2: <50% diameter narrowing].

The data are contained in file COEUR.DAT which can be obtained together with distribution package of a shareware decision tree system SIPINA-W [Zighed 92] from the University of Lyon FTP site ftp://eric.univ-lyon2.fr/pub/sipina.

The build decision tree is shown on Fig. 3. We can see that the algorithm created quite simple and clear tree structure. For example, C4.5 algorithm being applied to this problem builds decision tree with 50 (!) nodes. The great simplification is achieved thanks to more general form of classifying predicates associated with nodes.

The ternary functional primitive if present in one node realizes conditional operators. If value of its first argument is TRUE then its value is equal to value of its second argument, else it is equal to the third argument. N+ and N- values correspond to nA and nB values in PROCEDURE A, respectively. The leaf nodes related to respective target classes are marked by “+” and “-“ signs.

The more detailed comparison of FEDT with other decision tree algorithms in terms of accuracy, complexity and computation time is carried out now. At the same time our approach shows very good results in real-world problems in the field of real estate market. It helps reconizing various factors causing major deviations of prices of flats, houses and other realty from average level. One realtor company in Moscow uses it for practical market analysis.

Fig. 3. An example of functional extension of decision tree.
5. Conclusion.
Usually the predictive models created by symbolic KDD methods are evaluated using two criteria - accuracy and clarity for human perception. In the present research we are interested mainly in the latter. Our general assumpitions, considered examples and successful application of FEDT algorithm to practical problems witness that more general form of predicates associated with decision tree nodes, introducing non-linearity and multi-dimensionality lead in many cases to simpler and clearer classifying rules represented as FEDT.

At present we have not completed investigation of relative efficiency of FEDT and traditional decision tree algorithms in terms of accuracy and computational complexity. Nevertheless some preliminary conclusion can be made. Several tests showed that FEDT algorithm using LIN method builds decision trees giving practically the same number of errors as traditional algorithms (C4.5, CART) but for significantly less time. This gain is achieved because FEDT usually includes about 10 times less nodes while fast regression algorithm of LIN methods requires only 2 times longer time for creation of child nodes. Version of FEDT algorithm using PA method requires several times longer time but gives simpler decision trees than LIN version.

Naturally, exact and reliable comparison of FEDT and other methods requires multiple benchmark test which are performed by us at present.

ACKNOWLEDGEMENTS.

The authors would like to express their gratitude to Professor D.A. Zighed, members of his research group and other people taking part in creation of SIPINA-W and benchmark data set: S. Alussi, R. Bac, L. Jouvray, V. Placer, L. Ponsard, S. Rabaseda, R. Rakotomalala.

This work was supported in part by Russian Foundation for Fundamental Research grant 95-01-00775.

REFERENCES

Belsley, D.A., Kuh, E., Welsch, R.E. Regression diagnostics: identifying influential data and sources of collinearity, New York, John Wiley & Sons, 1980.

Bloedorn, E., Michalski, R.S. The AQ17-DCI system for data-driven constructive induction and its application to the analysis of world economics, in: Proceeding of ISMIS’96 (Ninth International Symposium on Methodologies for Intelligent Systems), Zakopane, Poland, Springer, 1996, pp 108-117.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. Classification and Regression Trees, Belmont, CA : Wardsworth, 1984.

Jensen, D. Knowledge discovery through induction with radomization testing, in: Proceedings of the AAAI KDD-91 Workshop, Anaheim, CA, 1991, pp 148-159.

Kass, G.V. An exploratory technique for investigating large quantities of categorical data, Applied Statistics, 24(2), 1974

Kiselev, M.V. PolyAnalyst - a machine discovery system inferring functional programs, in Proceedings of AAAI Workshop on Knowledge Discovery in Databases'94, Seattle, 1994, pp. 237-249.

Kiselev, M.V. PolyAnalyst 2.0: combination of statistical data preprocessing and symbolic KDD technique, in: Proceedings of ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, Heraklion, Greece, 1995, pp. 187-192.

Kiselev, M.V., Arseniev, S.B. Discovery of numerical dependencies in form of rational expressions, in; Proceedings of ISMIS'96 (Ninth International Symposium on Methodologies for Intelligent Systems), Zakopane, Poland, Springer, 1996, pp. 134-145.

Quinlan, J.R. C4.5 Programs for machine learning. Morgan Kaufmann, 1993.

Zighed, D.A., Auray, J.P., Duru, G. SIPINA: Méthode et logiciel. Lyon Lacassagne, 1992.

_916226896.doc
�

�

_916229128.doc
�

�

