Купить Matlab  |  Mathematica  |  Mathcad  |  Maple  |  Statistica  |  Другие пакеты Поиск по сайту
Internet-класс  |  Примеры  |  Методики  |  Форум  |  Download
https://hub.exponenta.ru/


 
Моделирование процессов обучения в нейронных сетях
выполнил: студент В.Борисов
Санкт-Петербургский Государственный Технический Университет
Кафедра распределенных вычислений и компьютерных сетей
Санкт-Петербург
2001

Вернуться на страницу <Model Vision Studium>
В начало

Модели нейронных сетей. Персептрон Розенблата.

Архитектура.

В качестве научного предмета искусственные нейронные сети впервые заявили о себе в 40-е годы. Стремясь воспроизвести функции человеческого мозга, исследователи создали простые аппаратные (а позже программные) модели биологического нейрона и системы его соединений. Когда нейрофизиологи достигли более глубокого понимания нервной системы человека, эти ранние попытки стали восприниматься как весьма грубые аппроксимации. Тем не менее на этом пути были достигнуты впечатляющие результаты, стимулировавшие дальнейшие исследования, приведшие к созданию более изощренных сетей.

 

(Нейрон с пороговой активационной функцией (персептронный))

Первое систематическое изучение искусственных нейронных сетей было предпринято Маккалокком и Питтсом в 1943 г. Позднее в работе они исследовали сетевые парадигмы для распознавания изображений, подвергаемых сдвигам и поворотам. Простая нейронная модель, показанная на рис., использовалась в большей части их работы. Элемент Σ умножает каждый вход х на вес w и суммирует взвешенные входы. Если эта сумма больше заданного порогового значения, выход равен единице, в противном случае – нулю. Эти системы (и множество им подобных) получили название персептронов. Они состоят из одного слоя искусственных нейронов, соединенных с помощью весовых коэффициентов с множеством входов (см. рис. ниже), хотя в принципе описываются и более сложные системы.

В 60-е годы персептроны вызвали большой интерес и оптимизм. Розенблатт доказал замечательную теорему об обучении персептронов, объясняемую ниже. Уидроу дал ряд убедительных демонстраций систем персептронного типа, и исследователи во всем мире стремились изучить возможности этих систем. Первоначальная эйфория сменилась разочарованием, когда оказалось, что персептроны не способны обучиться решению ряда простых задач. Минский строго проанализировал эту проблему и показал, что имеются жесткие ограничения на то, что могут выполнять однослойные персептроны, и, следовательно, на то, чему они могут обучаться. Так как в то время методы обучения многослойных сетей не были известны, исследователи перешли в более многообещающие области, и исследования в области нейронных сетей пришли в упадок. Недавнее открытие методов обучения многослойных сетей в большей степени, чем какой-либо иной фактор, повлияло на возрождение интереса и исследовательских усилий.

(Персептрон с многими выходами)

(Простейший персептрон Розенблата)

Простейший классический персептрон содержит нейрободобные элементы трех типов), назначение которых в целом соответствует нейронам рефлекторной нейронной сети.

S-элементы формируют сетчатку сенсорных клеток, принимающих двоичные сигналы от внешнего мира. Далее сигналы поступают в слой ассоциативных или A-элементов (для упрощения изображения часть связей от входных S-клеток к A-клеткам не показана). Только ассоциативные элементы, представляющие собой формальные нейроны, выполняют нелинейную обработку информации и имеют изменяемые веса связей. R-элементы с фиксированными весами формируют сигнал реакции персептрона на входной стимул.

Розенблатт называл такую нейронную сеть трехслойной, однако по современной терминологии, представленная сеть обычно называется однослойной, так как имеет только один слой нейропроцессорных элементов.

В работах Розенблатта был сделано заключение о том, что нейронная сеть рассмотренной архитектуры будет способна к воспроизведению любой логической функции, однако, как было показано позднее М.Минским и С.Пейпертом, этот вывод оказался неточным. Были выявлены принципиальные неустранимые ограничения однослойных персептронов, и в последствии стал в основном рассматриваться многослойный вариант персептрона, в котором имеются несколько слоев процессорных элементов.

Доказательство теоремы обучения персептрона показало, что персептрон способен научиться всему, что он способен представлять. Важно при этом уметь различать представляемость и обучаемость. Понятие представляемости относится к способности персептрона (или другой сети) моделировать определенную функцию. Обучаемость же требует наличия систематической процедуры настройки весов сети для реализации этой функции.

В начало
Вернуться на страницу <Model Vision Studium>

| На первую страницу | Поиск | Купить Matlab

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter


Copyright © 1993-2024. Компания Softline. Все права защищены.

Дата последнего обновления информации на сайте: 04.03.17
Сайт начал работу 01.09.00