Случай n = 10, значение случайной величины k = 5, p = 0.5, 0.3, 0.2
dbinom(k,n,p) - вероятность того, что случайная величина, имеющая биномиальное распределение с параметрами p и n примет значение, равное k
Значения npq для n = 10 и p = 0.5, 0.3, 0.2
Вероятность того, что случайная величина, имеющая биномиальное распределение с параметрами p = 0.5 и n = 10, примет значение, равное k = n/2 = 5, вычисленная по приближенной формуле Муавра-Лапласа
Вероятность того, что случайная величина, имеющая биномиальное распределение с параметрами p = 0.3 и n = 10, примет значение, равное k = n/2 = 5, вычисленная по приближенной формуле Муавра-Лапласа
Вероятность того, что случайная величина, имеющая биномиальное распределение с параметрами p = 0.2 и n = 10, примет значение, равное k = n/2 = 5, вычисленная по приближенной формуле Муавра-Лапласа
Видно хорошее совпадение значений соответствующих вероятностей
Случай n = 20, значение случайной величины k = 5, p = 0.5, 0.3, 0.2
Видно хорошее совпадение значений соответствующих вероятностей
Случай n = 50, значение случайной величины k = 5, p = 0.5, 0.3, 0.2
Видно хорошее совпадение значений соответствующих вероятностей
Можно анализировать свойства аппроксимации формулы Муавра-Лапласа графически