Вычислим теперь этот предел средствами Mathcad:
Заменяя теперь sinx и cosx-1 на эквивалентные, легко получаем ответ, равный -1/2
Из таблицы
эквивалентных бесконечно малых имеем sinx~x и tgx~x. Но заменять на эквивалентные можно только в отношениях, поэтому непосредственная подстановка в разность двух бесконечно малых недопустима. Поэтому запишем tgx=sinx/cosx и преобразуем выражение к видуРассмотрим
Заменяя в числителе бесконечно малую 1-cosx на эквивалентную х
2/2, получим ответ 1/2Рассмотрим
Для того чтобы вычислить предел
, щелкните по соответствующей позиции в панели Calculus, введите функцию,значение, к которому стремится x, нужный символ в панели Evaluation
и щелкните вне выделяющей рамкиВычислим теперь этот предел средствами Mathcad:
Это можно сделать устно
Так как при подстановке х=0 числитель и знаменатель обращаются в нуль , нельзя применять теорему о пределе частного, то есть имеем неопределенность типа 0/0 - в
числителе и знаменателе бесконечно малые функции. Пользуясь таблицей эквивалентных бесконечно малых, tg2x~2x, sin5x~5x, получим, что теперь нужно вычислитьРассмотрим